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Abstract	

Though	it	is	clear	that	it	is	impossible	to	store	an	unlimited	amount	of	information	

in	visual	working	memory	(VWM),	the	limiting	mechanisms	remain	elusive.	While	

several	models	of	VWM	limitations	exist,	these	typically	characterize	changes	in	

performance	as	a	function	of	the	number	of	to-be-remembered	items.	Here,	we	

examine	whether	changes	in	spatial	attention	could	better	account	for	VWM	

performance,	independent	of	load.	Across	two	experiments,	performance	was	better	

predicted	by	the	prioritization	of	memory	items	(i.e.,	attention)	than	by	the	number	

of	items	to	be	remembered	(i.e.,	memory	load).	This	relationship	followed	a	power	

law,	and	held	regardless	of	whether	performance	was	assessed	based	on	overall	

precision	or	any	of	three	measures	in	a	mixture	model.	Moreover,	at	large	set	sizes,	

even	minimally	attended	items	could	receive	a	small	proportion	of	resources,	

without	any	evidence	for	a	discrete-capacity	on	the	number	of	items	that	could	be	

maintained	in	VWM.	Finally,	the	observed	data	were	best	fit	by	a	variable-precision	

model	in	which	response	error	was	related	to	the	proportion	of	resources	allocated	

to	each	item,	consistent	with	a	model	of	VWM	in	which	performance	is	determined	

by	the	continuous	allocation	of	attentional	resources	during	encoding.		
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Public	Significance	Statement	

Visual	working	memory	supports	the	maintenance	of	visual	information	“on-

line”	for	short	periods	of	time,	and	is	known	to	be	able	to	store	a	limited	amount	of	

information.	The	present	study	examined	whether	the	distribution	of	spatial	

attention	across	items	in	a	visual	scene	could	account	for	changes	in	visual	working	

memory	performance	independent	of	the	number	of	items	that	had	to	be	

maintained.	Several	analyses	from	two	experiments	revealed	that	performance	was	

best	explained	by	the	proportion	of	attentional	resources	allocated	to	each	item,	

rather	than	by	the	number	of	items	that	had	to	be	remembered.	These	findings	

inform	our	understanding	of	how	the	brain	maintains	visual	information	on-line	to	

support	everyday	behaviors,	suggesting	that	the	amount	of	attention	allocated	to	an	

item	is	a	limiting	factor	in	how	accurately	that	item	can	be	stored	in,	and	recalled	

from,	visual	working	memory.		



CONTINUOUS	VWM	MEDIATED	BY	ATTENTION	
	

4	

The	ability	to	hold	visual	information	in	mind	for	short	periods	of	time	is	

critical	to	performing	numerous	everyday	behaviors	(e.g.,	remembering	the	number	

and	location	of	cars	in	your	mirror	while	driving),	and	has	been	linked	to	important	

aspects	of	cognition,	including	fluid	intelligence	(Unsworth,	Fukuda,	Awh,	&	Vogel,	

2014).	Despite	the	utility	of	this	cognitive	ability,	one	of	the	definitive	attributes	of	

visual	working	memory	(VWM)	is	its	severely	limited	capacity;	only	a	small	number	

of	high-fidelity	(i.e.,	high-resolution)	representations	can	be	maintained	in	VWM	

(Cowan,	2001;	Luck	&	Vogel,	2013;	Ma,	Husain,	&	Bays,	2014);	as	the	demands	for	

VWM	storage	increase,	there	is	an	associated	decrease	in	the	number	and/or	fidelity	

of	representations	maintained.	

	 The	exact	mechanism	of	information	loss	in	VWM	remains	elusive.	The	two	

predominant	theories	in	this	debate	are	the	discrete-capacity	(Luck	&	Vogel,	2013;	

Zhang	&	Luck,	2008)	and	continuous-resource	(Bays	&	Husain,	2008;	Ma	et	al.,	

2014)	models	of	VWM	capacity,	although	variants	on	these	theories	exist	(Fougnie,	

Suchow,	&	Alvarez,	2012;	van	den	Berg,	Awh,	&	Ma,	2014).	According	to	the	

discrete-capacity	model,	VWM	can	store	a	fixed	number	of	visual	objects,	and	once	

this	number	is	exceeded	all	items	not	encoded	in	these	few	storage	“slots”	are	

forgotten	(Luck	&	Vogel,	1997;	Zhang	&	Luck,	2008).	Further,	changes	in	memory	

load	can	affect	fidelity,	but	only	when	the	total	number	of	remembered	items	is	

below	capacity,	possibly	reflecting	the	sharing	of	resources	among	slots	when	

memory	loads	are	low	(Machizawa,	Goh,	&	Driver,	2012;	Zhang	&	Luck,	2008).	

Changes	in	load	above	capacity	should	generally	not	affect	memory	fidelity.	
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		 By	contrast,	continuous-resource	models	posit	that	there	is	no	upper	limit	on	

the	number	of	items	that	can	be	maintained	in	VWM;	rather,	capacity	is	constrained	

by	a	limited	pool	of	resources	that	must	be	allocated	across	all	maintained	items;	

increasing	the	number	of	items	entails	that	each	will	receive	a	smaller	proportion	of	

the	available	resources,	resulting	in	a	proportional	loss	in	representational	fidelity	

(Bays,	Catalao,	&	Husain,	2009;	Bays	&	Husain,	2008;	Wilken	&	Ma,	2004).	As	

evidence	of	this	continuous	allocation	of	a	shared	resource,	Bays	and	Husain	(2008)	

demonstrated	that	VWM	error	(inverse	of	fidelity)	varies	with	memory	load	

according	to	a	simple	power	law,	consistent	with	the	predicted	change	in	noise	of	a	

neural	population	code	(Bays,	2014).	

Most	studies	examining	models	of	VWM	place	significant	emphasis	on	the	

relationship	between	memory	load,	as	defined	by	the	number	(and	occasionally	

complexity)	of	the	physical	stimuli	to	be	remembered,	and	memory	performance.	

While	this	approach	has	been	very	informative,	it	overlooks	the	potential	flexibility	

of	this	memory	resource.	For	example,	many	studies	have	demonstrated	that	VWM	

performance	is	sensitive	to	eye-movements	(Bays	&	Husain,	2008),	presentation	

order	(Gorgoraptis,	Catalao,	Bays,	&	Husain,	2011;	Zokaei,	Gorgoraptis,	Bahrami,	

Bays,	&	Husain,	2011),	attentional	cues	(Zhang	&	Luck,	2008;	Zokaei	et	al.,	2011),	

attentional	lapses	(Fougnie	et	al.,	2012),	reward	(Klyszejko,	Rahmati,	&	Curtis,	

2014),	and	even	voluntarily	shifts	in	performance	(Machizawa	et	al.,	2012).	Thus,	

VWM	performance	cannot	be	fully	explained	by	item	load	alone,	but	must	also	

account	for	situations	where	resources	are	distributed	unevenly	across	

remembered	items.	However,	most	studies	have	tended	to	assume	that	memory	
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resources	are	distributed	evenly,	potentially	failing	to	capture	the	variability	among	

items	(Fougnie	et	al.,	2012;	van	den	Berg,	Shin,	Chou,	George,	&	Ma,	2012).	

One	potential	source	of	variation	in	VWM	is	attention.	It	has	long	been	known	

that	when	trying	to	remember	an	array	of	letters,	cueing	attention	to	a	subset	of	

items	in	the	array	improves	performance	for	those	items	(Sperling,	1960).	Thus,	

restricting	the	scope	of	spatial	attention	to	fewer	items	reduces	the	demand	on	

resources	and	improves	performance.	Notably,	the	loss	of	encoding	accuracy	that	

occurs	when	attention	must	be	distributed	across	multiple	items	occurs	even	in	the	

absence	of	spatial	attentional	cues	(Duncan,	1980).	Consequently,	when	multiple	

items	are	to	be	remembered,	it	is	potentially	the	distribution	of	attention	that	limits	

performance,	regardless	of	whether	explicit	attentional	cues	are	present	or	not;	the	

number	of	available	visual	items	to	be	remembered	is	simply	a	confounding	variable	

over	which	participants	must	allocate	attentional	resources.	Consistent	with	this	

account,	several	recent	variable-precision	models	incorporate	the	allocation	of	

attention	during	encoding	into	models	of	VWM	capacity	(Fougnie	et	al.,	2012;	van	

den	Berg	et	al.,	2012),	suggesting	that	the	allocation	of	attention,	rather	than	storage	

limitations,	may	play	a	critical	role	in	limiting	VWM	performance.			

While	the	attentional	mediation	of	VWM	resources	is	a	prediction	of	most	

continuous-resource	models,	there	are	also	two	variants	of	discrete-capacity	models	

that	predict	comparable	roles	for	attention,	with	some	key	differences	(Machizawa	

et	al.,	2012;	Zhang	&	Luck,	2008,	2011).	First,	according	to	the	slots+averaging	

model,	the	precision	associated	with	each	memory	slot	is	fixed,	however	memory	
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precision	can	be	improved	by	storing	individual	items	across	multiple	slots.	One	

prediction	that	separates	this	model	from	continuous-resource	models	is	that	the	

least	amount	of	resources	that	can	be	allocated	to	a	single	item	is	determined	by	the	

amount	of	resources	present	in	a	single	storage	slot.	Second,	according	to	the	

slots+resources	model,	there	are	no	restrictions	on	how	resources	are	allocated	

across	memory	items;	the	main	difference	that	separates	this	model	from	

continuous-resource	models	is	that	resources	can	only	be	allocated	across	a	fixed	

number	of	objects.	Accordingly,	when	the	number	of	items	to	be	remembered	

exceeds	this	item	limit,	the	slots+resources	model	predicts	that	extra-capacity	items	

are	forgotten,	whereas	continuous-resource	models	predict	all	items	are	

remembered,	but	the	precision	of	each	item	is	proportional	to	the	amount	of		

resources	allocated	to	it.	Thus,	continuous-resource	models	and	these	two	hybrid	

discrete-capacity	models	differ	primarily	in	how	they	predict	load	and	attention	can	

affect	the	precision	and	likelihood	of	items	being	stored	in	memory.	Specifically,	

while	fixed-capacity	models	posit	that	the	effect	of	attention	on	performance	should	

be	constrained	by	the	memory	load,	as	well	as	by	whether	or	not	items	can	receive	

less	than	one	“slot”	worth	of	resources,	continuous-resource	models	(in	particular	

variable-precision	models)	impose	no	such	constraints	on	the	effect	of	attention.	

However,	while	numerous	studies	have	examined	the	effect	of	load	on	VWM	

performance,	fewer	studies	have	examined	the	effects	of	attentional	allocation.		

In	the	present	study,	we	examined	how	systematically	varying	the	

distribution	of	attention	across	a	fixed	set	of	stimuli	influences	the	way	those	items	

are	encoded	in	VWM.	Participants	saw	memory	arrays	containing	six	(Experiment	
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1a),	or	four	or	one	(Experiment	1b)	colored	squares	and,	after	a	brief	delay,	were	

required	to	report	the	color	of	one	item	using	a	continuous	response	(Wilken	&	Ma,	

2004).	To	evaluate	the	role	of	attention,	we	presented	predictive	spatial	cues	during	

the	memory	array,	and	systematically	varied	both	the	number	and	predictive	

validity	of	the	cues.	We	specifically	tested	the	prediction	that	if	VWM	resources	are	

flexibly	allocated	via	attention,	then	the	proportion	of	resources	allocated	to	each	

item	should	be	best	described	by	a	power	law	that	follows	the	predictive	value	of	

each	cue,	independent	of	the	load	(i.e.,	the	number	of	items	with	a	greater	than	zero	

percent	chance	of	being	probed).	We	also	examined	the	specific	predictions	of	the	

continuous-resource	and	discrete-capacity	models,	to	determine	whether	this	effect	

was	limited	to	a	fixed	number	of	items.	Finally,	we	compared	the	fit	of	different	

memory	models	to	our	observed	data,	to	determine	how	well	the	results	could	be	

explained	by	fixed-capacity	as	opposed	to	continuous-resource	models.	

Method	

Participants	

	 A	total	of	43	participants	(20	and	23	in	Experiments	1a	and	1b,	respectively)	

ages	18	–	29	participated	in	this	study.	Participants	were	recruited	from	Brock	

University	and	were	either	paid	by	honorarium	10$/hour	or	given	2	hours	of	course	

credit.	All	participants	were	screened	for	normal	color	vision	using	the	Ishihara	Test	

of	Color	Vision,	with	one	participant	excluded	from	Experiment	1b	for	not	meeting	

normal	criteria.	Two	additional	participants	did	not	complete	the	task	and	their	data	
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was	not	analyzed,	resulting	in	20	participants	per	experiment.	All	procedures	were	

approved	by	the	Research	Ethics	Board	of	Brock	University.		

Apparatus	

	 Stimuli	were	presented	using	PsychoPy	(Peirce,	2007)	on	a	20”	LCD	display	

at	a	distance	of	~	57	cm.		

Procedure	and	Stimuli	

	 Both	Experiments	(1a	and	1b)	used	a	similar	task	with	the	exception	of	the	

number	and	predictive	validity	of	the	memory	items	and	cues	(see	Table	1).	

In	Experiment	1a,	six	equally	spaced	colored	squares	(1°	x	1°)	were	

presented	for	500	ms	centered	around	a	central	fixation	dot	(0.3°	in	diameter),	

along	with	1	–	6	spatial	line	cues.	The	line	cues	indicated	which	of	the	six	sample	

items	were	likely	to	be	probed	at	the	end	of	the	trial.	The	predictive	validity	of	these	

cues	varied	between	33	–	100%,	and	was	indicated	to	the	participant	at	the	

beginning	of	each	block.	Seven	conditions	were	presented	(see	Table	1):	one	cue	–	

100%	valid;	one	cue	–	50%	valid;	one	cue	–	33%	valid;	two	cues	–	100%	valid;	two	

cues	–	66%	valid;	three	cues	–	100%	valid;	six	cues	–	100%	valid.	Consequently,	in	

some	of	the	conditions	the	uncued	items	remained	relevant	to	the	participant,	but	

were	less	likely	to	be	probed.	For	example,	in	the	two	cues	–	66%	condition	of	

Experiment	1a,	each	of	the	two	cued	items	had	a	33%	likelihood	of	being	probed,	

and	each	of	the	four	uncued	items	had	an	8.25%	likelihood	of	being	probed.	
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Figure	1	-.	A	schematic	of	experimental	trials	from	Experiment	1a.	Participants	were	instructed	to	report	
the	color	of	the	probed	item	(as	indicated	by	the	bold	outline).	The	number	of	items	to	be	remember	was	
determined	by	the	validity	of	the	cues,	which	was	indicated	to	participants	prior	to	each	block.	
Experiment	1b	used	total	set	sizes	of	4	or	1,	otherwise	the	procedures	were	identical.		

	

The	sample	display	was	followed	by	a	900	ms	delay	in	which	only	the	fixation	

cross	remained.	Following	the	delay,	a	black	box	outline	of	all	six	sample	items	was	

presented,	with	one	square	presented	with	a	bold	outline	to	indicate	the	probed	

position	(see	Figure	1).	In	addition,	a	color	wheel	(12°	radius)	containing	all	

potential	color	values	was	presented.	The	probed	item	was	selected	at	random	from	

the	relevant	items	in	accordance	with	the	validity	of	the	cues	presented	during	the	

sample.	As	participants	moved	the	mouse	around	the	display,	the	color	of	the	

probed	item	was	updated	to	reflect	the	position	on	the	color	wheel	closest	to	the	

mouse	location.	Participants	were	instructed	to	press	the	mouse	button	when	the	
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color	indexed	by	the	probed	location	matched	as	closely	as	they	could	remember	to	

the	sample	item	presented	in	that	location.		

		 Participants	performed	a	total	of	1,200	trials	in	blocks	of	50,	with	optional	

breaks	in	between.	The	number	of	trials	per	condition	was	balanced	so	that	100	

valid	trials	were	completed	per	condition	(i.e.,	100	trials	in	the	100%	valid	

conditions,	150	trials	in	the	66%	valid	condition,	200	trials	in	the	50%	valid	

conditions,	and	300	trials	in	the	33%	valid	condition).		

The	aim	of	Experiment	1b	was	to	replicate	the	Experiment	1a	results	with	a	

smaller	set	size—four	items—and	with	uncued	probabilities	that	were	equivalent	or	

similar	to	cued	probabilities.	Experiment	1b	also	included	a	one-item	set	size	

condition	to	establish	a	baseline	for	maximal	task	performance.	Seven	total	

conditions	were	used:	one	cue	–	100%	valid;	one	cue	–	33%	valid;	two	cues	–	100%	

valid;	two	cues	–	66%	valid;	three	cues	–	100%	valid;	four	cues	100%	–	valid;	and	

one	item,	one	cue	–	100%	valid.	Again,	100	valid	trials	per	condition	were	used,	with	

a	total	of	1,100	trials.		

	 Sample	colors	for	both	experiments	were	selected	randomly	from	one	of	360	

unique	colors	obtained	from	a	circular	wheel	on	the	CIE	L*a*b*	color	space	with	

coordinates	of	a	=	-	6	and	b	=	14	with	a	radius	of	49,	calibrated	to	the	monitor.	

Prior	to	performing	the	experimental	task,	participants	also	performed	a	

standard	change-detection	task	to	estimate	VWM	capacity.	These	data	were	not	

analyzed	for	the	purposes	of	the	current	study,	and	as	such	the	results	are	not	

presented	here.	
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Analysis	

Response	Error	

We	evaluated	memory	fidelity	using	numerous	measures	all	based	on	raw	

response	error	(i.e.,	the	angular	distance	in	degrees	between	the	actual	color	of	the	

stimulus	and	the	probed	color).	First,	the	amount	of	variance	in	participants’	

responses	was	assessed	using	the	circular	standard	deviation	of	the	response	error	

(SDresponse),	and	we	calculated	Precision	as	the	inverse	of	response	error	(i.e.,	

Precision	=	1/SDresponse).	Relative	Precision	was	also	calculated	from	both	

experiments	using	Relative	Precision		=	Precision/Max	Precision,	where	Max	

Precision	was	defined	as	precision	obtained	in	the	one	item,	one	cue	–	100%	

condition	from	Experiment	1b.	Lower	error	values	indicate	higher	fidelity	working	

memory	representations,	and	relative	precision	estimates	the	proportion	of	

available	resources	allocated	to	the	probed	item.	

	 Mixture	Model	Analysis	

In	order	to	test	specific	predictions	of	the	fixed-capacity	and	continuous-

resource	models,	raw	error	was	also	decomposed	into	a	three-component	mixture	

model	describing	different	aspects	of	performance	(Bays	et	al.,	2009)	using	

Maximum	Likelihood	Estimation	(MLE).	The	mixture	model	is	described	as:		

𝑝 𝜃 = 1− 𝛾− 𝛽 𝜙𝜎 𝜃− 𝜃 + 𝛾
1
2𝜋

+ 𝛽
1
𝑚

𝜙𝜎

𝑚

𝑖

𝜃− 𝜃𝑖
∗ 	
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where	θ	is	the	target	color,	𝜃	is	the	reported	color,	and	the	probability	of	a	given	

response,	𝑝 𝜃 ,	is	determined	by	three	distributions:	the	proportion	of	target	

responses	with	a	normal	circular	(Von	Mises)	distribution	of	a	given	standard	

deviation	(𝜙𝜎);	the	proportion	of	non-target	errors,	β,	which	are	responses	centered	

around	m	non-probed	items;	and	the	proportion	of	guesses,	γ,	which	is	a	uniform	

distribution.	The	circular	SD	of	the	mixture	model,	the	probability	of	non-target	

responses,	and	the	probability	of	guessing	are	referred	to	throughout	as	SDMM,	NTP	

and	GP,	respectively.	MLE	was	performed	using	MATLAB	and	the	MemToolBox	

(Suchow,	Brady,	Fougnie,	&	Alvarez,	2013).		

Curve	Fitting		

To	test	the	prediction	that	measures	of	behavior	should	follow	a	power	law	

determined	by	the	proportion	of	attentional	resources	allocated	to	each	item,	the	

measures	of	response	error	(SDresponse),	as	well	as	each	of	the	measures	obtained	in	

the	mixture	model	were	fit	to	a	power	law	function:	

𝑦 ∝  𝑎𝑥! ,	

where	x	is	either	the	load	or	probe	likelihood,	and	y	is	the	measure	of	behavior	

(SDresponse,	SDMM,	NTP,	or	GP),	k		is	the	power	constant,	and	a	is	a	constant.		

Curve	fits	were	computed	in	MATLAB	using	nonlinear	least	squares	

regression	with	bisquare	robust	fitting	across	the	group	averaged	data	from	each	

cued	condition.	Bisquares	robust	fitting	minimizes	the	effect	of	outliers,	although	

similar	results	were	obtained	without	this	method.	For	each	fit	type,	95%	
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confidence	intervals	were	obtained,	and	data	from	invalidly	cued	items	were	used	as	

validation	data	(see	Supplementary	Table	1).	

	Comparison	between	curve	fits	was	performed	via	root	mean-squared	error		

(RMSE),	as	well	as	through	the	Akaike	Information	Criterion	(AIC),	which	was	

estimated	using	SSE	as		

𝐴𝐼𝐶 = 𝑛 log
𝑆𝑆𝐸
𝑛 + 2 𝑝 + 1 ,	

where	n	is	the	number	of	data	points	and	p	is	the	number	of	free	parameters	

estimated	using	the	least	squares	method	(Burnham	&	Anderson,	2002).	AIC	

includes	a	penalty	for	the	number	of	free	parameters	in	the	model,	although	

assumes	infinite	data.	The	corrected	AIC,	AICc,	is	calculated	as	

𝐴𝐼𝐶! = 𝐴𝐼𝐶 +  !!(!!!)
!!!!!

.	

Model	Comparison	

	 In	order	to	directly	compare	whether	fixed-capacity	or	continuous-resource	

models	could	best	describe	our	data,	we	used	the	method	of	van	den	Berg	et	al	(van	

den	Berg	et	al.,	2014,	2012)	to	estimate	the	parameters	for	four	distinct	models	(see	

van	den	Berg	et	al.,	2014	for	a	full	description	of	the	methods	and	model	formulae).	

As	with	the	mixture	model	described	above,	these	models	all	assume	responses	

follow	a	Von	Mises	distribution	that	has	a	concentration	parameter	of	κ,	and	that	the	

report	of	the	target	is	corrupted	by	Von	Mises-distributed	noise.		J	is	the	measure	of	

precision,	which	is	inversely	related	to	κ.			

(1)	

(2)	
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	 For	fixed-capacity	models,	the	maximum	number	of	items	that	can	be	stored,	

K,	is	limited.	We	tested	two	specific	variants	of	the	fixed-capacity	models	described	

by	Zhang	and	Luck	(2008):	the	slots+averaging	model,	in	which	the	lowest	amount	

of	precision	that	an	item	can	be	stored	with	is	equivalent	to	that	of	one	“slot”;	and	

the	slots+resource	model,	in	which	precision	is	equivalent	for	all	items	stored	and	

follows	a	power-law	relationship	N,	J	=	J1Nα	,	where	N	is	the	number	of	items	

remembered	and	J1	is	the	precision	of	a	single	item	(i.e.,	N	=	1).	

	 For	continuous-resource	models,	we	examined	two	models:	first,	an	equal-

precision	model	(Bays	&	Husain,	2008),	which	is	similar	to	the	slots+resource	model	

described	above,	although	without	the	capacity	parameter	K;	in	addition,	we	also	

examined	a	variable-precision	model	(van	den	Berg	et	al.,	2012),	in	which	the	

precision	of	remembered	items	can	vary	randomly	across	items	and	trials	according	

to	a	gamma	distribution	with	a	mean	of	𝐽	=	𝐽1Nα	and	a	scale	parameter	τ.		

	 	Importantly,	we	fit	each	of	these	four	models	to	the	raw	error	data	in	two	

ways:	once	where	error	was	predicted	by	memory	load,	and	once	where	it	was	

predicted	by	probe	likelihood.	Specifically,	first,	we	fit	the	models	where	N	=	the	

total	number	of	to-be	remembered	items,	and	then,	second,	we	fit	the	models	where	

N	=	1/probe	likelihood	(rounded	to	the	nearest	whole	number).	That	is,	for	each	

model	we	assumed	that	the	resources	allocated	to	each	item	should	be	proportional	

to	the	probability	of	each	item	being	tested.	Thus,	if	performance	were	primarily	

constrained	by	the	total	number	of	to-be-remembered	items,	we	would	expect	the	

models	defined	by	load	to	outperform	those	defined	by	the	proportion	of	allocated	
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resources,	independent	of	other	aspects	of	the	model	(i.e.,	fixed-capacity,	slot-

averaging,	equal/variable	precision).		

	 For	each	model	and	each	subject,	parameter	estimates	were	obtained	using	

maximum-likelihood	estimation	(code	available	at	

http://www.cns.nyu.edu/malab/resources.html)	using	an	evolutionary	algorithm.	

Following	the	procedure	of	van	den	Berg	et	al	(2014),	models	were	compared	using	

the	Akaike	information	criterion	(AIC).	

Additional	statistics	were	computed	using	JASP	(JASP	Team,	2016).	

Results	

	 In	both	versions	of	the	experiment,	participants	performed	a	continuous-

response	task	in	which	they	had	to	report	the	color	of	a	sample	item	maintained	in	

VWM.	Critically,	we	manipulated	the	number	and	predictive	validity	of	spatial	cues	

presented	during	the	sample	display.	Consequently,	in	addition	to	the	typical	

analysis	examining	memory	performance	as	a	function	of	the	item	load	(i.e.,	the	

number	of	to-be-remembered	items),	we	also	examined	performance	as	a	function	

of	the	of	probe	likelihood	of	each	item	(i.e.,	cue	validity/number	of	cues).	We	

predicted	that	if	VWM	resources	were	proportionally	distributed	across	memory	

items	according	to	the	likelihood	that	each	item	would	be	probed,	performance	

would	vary	primarily	by	the	validity	of	the	cues.	For	example,	if	2	cues	are	presented	

with	100%	validity,	then	each	item	only	has	a	50%	chance	of	being	probed,	and	

attention	should,	on	average,	be	divided	equally	across	those	two	items;	if	VWM	

performance	is	primarily	affected	by	the	voluntary	allocation	of	attention,	
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performance	on	this	condition	should	be	similar	to	that	of	the	single	cue	–	50%	valid	

condition,	since	in	each	case	the	cued	items	will	only	be	probed	on	50%	of	trials	(see	

Table	1	for	a	full	list	of	cue	validity	and	Supplementary	Table	2	for	a	complete	

breakdown	of	the	data).		

	 To	test	this	prediction,	we	first	examined	VWM	performance	using	a	measure	

of	response	error	(SDresponse).	Drawing	from	the	predictions	of	resource	allocation	

models,	we	modelled	VWM	performance	using	a	power-law	function	(Bays	&	

Huasin,	2008),	and	tested	whether	cue	validity	or	memory	load	was	the	better	

predictor.	To	examine	whether	cueing	effects	were	subject	to	item	limits,	and	to	

examine	specific	predictions	made	by	the	slots+averaging	and	slots+resource	

models,	we	subsequently	performed	additional	analyses	on	the	mixture	model	

proposed	by	Zhang	and	Luck	(2008)	and	modified	by	Bays	et	al.	(2009).	We	also	

compared	the	fits	of	fixed-capacity	and	flexible-resource	models	to	the	raw	

response	error,	using	both	load	and	probe	likelihood	as	predictors.	 		

SDresponse	

Response	error	(SDresponse	or	1/precision)	is	plotted	relative	to	load	(i.e.,	the	

number	of	items	to	be	remembered;	Figure	2A)	and	probe	likelihood	(i.e.,	cue	

validity/number	of	cues;	Figure	2B).	As	is	evident	from	the	figures,	the	amount	of	

error	tended	to	increase	as	a	function	of	load,	and	decrease	as	a	function	of	probe	

likelihood.	That	is,	as	the	number	of	to-be-remembered	items	increased,	the	amount	

of	resources	allocated	to	each	item	decreased,	and	error	increased.	Probe	likelihood,	

however,	affected	SDresponse	over	and	above	memory	load.	For	example,	significant	
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differences	were	observed	between	the	1	cue	–	33%	(M	=	35.2)	and	the	6	cues	-

100%	(M	=	51.1)	conditions,	t(19)	=	5.73,	p	<	.001,	Cohen’s	d	=	1.281,	even	though	

both	conditions	required	all	six	items	be	remembered.	By	contrast,	there	was	no	

observed	difference	between	the	3	cues	–	100%	(M	=	40.0)	and	1	cue	–	33%	(M	=	

35.2)	conditions	(cued	trials),	t(19)	=	1.617,	p	=	.122,	Cohen’s	d	=	.385,	even	though	

there	was	a	large	difference	in	the	total	item	load	(3	vs	6).	Thus,	the	size	of	the	effect	

of	doubling	probe	likelihood	while	holding	load	constant	was	very	large,	while	the	

effect	of	doubling	load	while	holding	probe	likelihood	constant	was	modest.	

To	assess	whether	response	error	is	explained	by	the	amount	of	resources	

allocated	to	each	item	(probe	likelihood),	we	fit	response	error	to	a	power-law	

model,	consistent	with	the	predictions	of	Bays	and	Husain	(2008).	Fitting	a	power	

law	function	where	SDresponse	varies	as	a	function	of		probe	likelihood	revealed	that	

performance	was	strongly	predicted	by	the	predictive	validity	of	the	cues	(Figure	

2B),	explaining	over	90%	of	the	variance	in	performance,	adjusted	R2	=	.902,	RMSE	=	

3.497.	By	comparison,	fitting	a	power	law	in	which	SDresponse	varies	as	a	function	of	

memory	load	(Figure	2A)	was	a	much	poorer	fit	to	the	data,	adjusted	R2	=	.515,	

RMSE	=	7.781.		
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Moreover,	the	continuous-resource	model	of	VWM	predicts	that	performance	

should	decrease	according	to	the	proportion	of	available	resources	that	can	be	

allotted	to	a	given	item	(Bays	&	Husain,	2008).	Accordingly,	we	also	calculated	

precision	as	a	proportion	of	available	resources	(relative	precision),	using	

performance	from	the	one	cue	–	100%	condition	of	Experiment	1b	as	a	measure	of	

maximum	precision.	Fitting	a	power	law	to	relative	precision	as	a	function	of	probe	

likelihood	provided	a	strong	fit	to	the	data	(Figure	2D),	explaining	almost	all	

Figure	2	-	Overall	response	error	(SDresponse)	and	relative	precision,	plotted	by	
total	number	of	to-be-remembered	items	(A,C)	or	the	likelihood	of	an	item	
being	probed	(B,D).	Data	are	fit	to	a	power	law	function	as	in	Bays	&	Husain	
(2008).	Green	and	red	items	represent	data	from	Experiments	1a	and	1b,	
respectively.	Closed	circles	represent	cued	items,	open	diamonds	represent	
uncued	items	(validation	data).	Dashed	lines	indicated	95%	confidence	
intervals	of	the	fitted	line.	Full	means	and	SDs	are	available	in	Supplementary	
Table	2.	
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variance	in	the	cued	trials,	adjusted	R2	=		.9663,	RMSE	=	.0429.	In	contrast,	modeling	

relative	precision	as	a	function	of	the	number	of	items	that	were	to-be-remembered	

(Figure	2C)	resulted	in	a	poorer	fit,	adjusted	R2	=	.8247,	RMSE	=		.0979.	Comparing	

these	two	fits	using	AICc	strongly	favored	the	likelihood	model	(AICc	=	-89.6)	over	

the	model	explaining	performance	by	load	(AICc	=	-64.861).	Thus,	overall	and	

relative	precision	are	both	strongly	predicted	by	a	model	in	which	VWM	resources	

are	proportionally	distributed	across	all	relevant	items	in	the	memory	array	based	

on	the	likelihood	that	each	item	can	be	probed.			

Mixture	Model	Analysis		

	 The	analysis	of	overall	response	error	(SDresponse)	suggests	that	participants	

can	flexibly	allocate	VWM	resources	according	to	the	predictive	validity	of	spatial	

attention	cues.	However,	it	is	possible	that	even	if	participants	can	distribute	

resources	unevenly,	this	ability	may	be	subject	to	item	limits	(Zhang	&	Luck,	2008).	

According	to	such	fixed-capacity	models,	changes	in	the	SD	of	reported	targets	from	

increases	in	memory	load	should	asymptote	at	storage	capacity	(K),	once	the	guess	

rate	(i.e.,	random	responses)	is	accounted	for.	Moreover,	as	outlined	in	the	

introduction,	discrete-capacity	models	make	specific	predications	about	the	effect	of	

attentional	cues	on	VWM	resource	allocation	(as	measured	by	precision),	although	

previous	studies	examining	these	predictions	have	not	accounted	for	the	possibility	

that	resource	allocation	is	determined	by	the	predictive	validity	of	those	cues.			

Consequently,	we	further	examined	performance	by	breaking	down	

responses	using	the	three-component	mixture	model	(Bays	et	al.,	2009).	Drawing	
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from	discrete-capacity	models,	the	mixture	model	analysis	provides	a	measure	of	

response	error	(SDMM)	on	those	trials	in	which	participants	correctly	reported	the	

target,	as	well	as	an	estimate	of	the	proportion	of	trials	on	which	subjects	guess	(Gp),	

and	the	proportion	of	trials	in	which	subjects	incorrectly	report	a	non-target	item	

(NTp).		

Mixture	Model	Error	(SDMM)	

	 The	amount	of	response	error	on	those	trials	in	which	participants	correctly	

reported	the	target	increased	with	both	load	and	probe	likelihood	(Figure	3).	One	of	

the	main	predictions	of	the	discrete-capacity	model	is	that	no	changes	in	precision	

(1/SDMM)	should	be	observed	once	the	number	of	items	to	be	remembered	exceeds	

capacity.	Contrary	to	this	prediction,	we	observed	moderate	evidence	for	decreases	

in	precision	(increased	error)	from	conditions	with	3	to	6	cues	(100%	cue	validity,	

Ms	=	21.5,	28.2,	respectively)	in	Experiment	1a,	t(19)	=	1.916,	p	=	.035	(one	tailed),	d	

=	.585,	as	well	as	from	conditions	with	4	cues	(Experiment	1b;	M	=	21.4)	to	6	cues	

(100%	cue	validity,	Experiment	1a;	M	=	28.2),	t(20.51)	=	1.836,	p	=	.040	(one	tailed),	

d	=	0.698.	These	increases	in	response	error	suggest	no	fixed	capacity	on	the	

number	of	items	that	can	be	stored	in	memory,	and	instead	are	more	consistent	

with	a	continuous-resource	model	(see	Model	Comparison	section	below	for	a	more	

complete	test	between	models).			
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Figure	3		Error	(SDMM),	guess	rate	(Gp)	and	non-target	errors	(NTp)	obtained	from	the	three-
component	mixture	model	(Bays	et	al.,	2009).	(Left)	Data	are	plotted	by	total	number	of	items	to-
be-remembered.	(Right)	Plotting	the	data	by	the	likelihood	of	an	item	being	probed	and	fitting	it	to	
a	power	law	function	is	a	strong	predictor	across	all	three	measures.	Green	and	red	items	
represent	data	from	Experiments	1a	and	1b,	respectively.	Closed	circles	represent	cued	items,	
open	diamonds	represent	uncued	items	(validation	data).	Dashed	lines	indicated	95%	confidence	
intervals	of	the	fitted	models.	Full	means	and	SDs	are	available	in	Supplementary	Table	2.	
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A	further	prediction	of	the	slots+averaging	model	(Zhang	and	Luck,	2008)	is	

that	items	in	memory	should	not	be	able	to	receive	fewer	resources	than	a	single	

slot.	To	test	this	prediction,	we	used	SDMM	on	neutral-cued	trials	with	three	items	(3	

cues	–	100%)	as	an	estimate	of	the	precision	afforded	by	one	slot,	and	tested	for	

decreases	in	precision	on	uncued	trials,	in	particular	those	trials	where	the	

likelihood	of	the	item	being	probed	was	very	small.	The	results	of	these	

comparisons	are	presented	in	Table	2.	We	observed	evidence	in	favor	of	a	decrease	

in	precision	for	uncued	trials	relative	to	neutral	trials,	but	only	when	the	proportion	

of	resources	allocated	to	the	uncued	items	(as	determined	by	probe	likelihood)	was	

small.	For	example,	in	the	2	cues	–	66%	condition	of	Experiment	1a,	each	uncued	

item	was	probed	only	8.25%	of	the	time,	compared	to	the	33%	probe	validity	of	the	

neutral	condition	(3	cues	–	100%).	This	large	difference	in	cue	validity	led	to	a	

significant	decrease	in	precision,	suggesting	that	the	uncued	items	received	just	a	

small	amount	of	available	memory	resources.	Consequently,	these	findings	suggest	

that	the	proportion	of	VWM	resources	allocated	to	uncued	items	is	not	limited	to	the	

resolution	of	a	single	slot,	but	rather	is	determined	by	the	distribution	of	attention.		

Following	from	the	analysis	of	SDresponse,	we	also	examined	whether	SDMM	

varied	as	a	function	of	probe	likelihood	according	to	a	power	law.	This	analysis	

revealed	that	the	power	law	function	provided	a	close	fit	to	the	data	when	presented	

as	a	function	of	the	predictive	value	of	the	cues,	adjusted	R2	=	.9029,	RMSE	=	1.264.	

Thus,	the	results	suggest	that	within	a	mixture	model,	VWM	precision	is	strongly	

predicted	by	the	proportion	of	resources	allocated	to	each	item	(as	determined	by	

the	predictive	validity	of	spatial	attention	cues),	independent	of	the	memory	load.	
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Mixture	Model	Guess	Rate	(Gp)		

As	is	evident	in	Figure	3D,	although	the	proportion	of	guesses	increased	with	

the	overall	load,	GP	appeared	to	be	more	closely	related	to	probe	likelihood.	Indeed,	

following	from	the	analyses	of	SDresponse	and	SDMM,	modeling	the	proportion	of	

guesses	as	a	power	law	function	relative	to	the	predictive	value	of	the	spatial	cues	

demonstrated	a	close	fit,	Adjusted	R2	=	.9247,	RMSE	=	0.02356.		

Mixture	Model	Non-Target	Errors	(NTp)			

In	addition	to	looking	at	both	error	and	guess	rate,	the	three-component	

model	created	by	Bays	et	al.	(2009)	supports	a	parameter	for	reporting	one	of	the	

non-target	items,	referred	to	sometimes	as	“swaps”.	The	probability	of	making	non-

target	errors	(NTp)	has	been	shown	to	increase	with	load	(Bays	et	al.,	2009),	and	

increase	as	the	spatial	distance	between	items	is	reduced	(Emrich	&	Ferber,	2012).	

Examining	NTp	revealed	that	swap	errors	increase	with	load	and	cue	validity	(Figure	

3E	and	F).	Following	the	analyses	above,	a	model	in	which	NTp	varies	by	cue	validity	

according	to	a	power	law	explained	nearly	88%	of	the	variance	in	the	data,	adjusted	

R2	=	.8791,	RMSE	=	.02741.	Thus,	both	GP	and	NTP	appear	to	vary	as	a	function	of	the	

allocation	of	attention,	independent	of	the	memory	load.		That	is,	both	GP	and	NTP	

are	affected	by	resource	allocation	independently	of	the	total	number	of	to-be-

remembered	items.	For	example,	in	Experiment	1a,	despite	doubling	the	number	of	

to-be-remembered	items	from	3	to	6,	there	was	no	difference	in	the	proportion	of	

guesses	or	swap	errors	between	the	3	cues	–	100%	and	1	cue	–	33%	conditions,	

t(19)	=	1.323,	p	=	.201,	d	=	.296	and	t(19)	=	.981,	p	=		.339,	d	=	.219.		
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Model	Comparison	

	 Altogether,	the	preceding	analyses	consistently	revealed	that	probe	

likelihood	is	a	better	predictor	of	working	memory	performance	than	load—

regardless	of	whether	performance	is	measured	as	overall	response	error,	relative	

precision,	or	any	of	the	tested	mixture	model	parameters—and	that	the	relationship	

with	likelihood	appears	to	follow	a	power	law.	Moreover,	in	testing	specific	

conditions	for	which	fixed-capacity	and	continuous-resource	models	make	different	

predictions,	we	were	unable	to	find	evidence	of	a	fixed	memory	capacity.	

Consequently,	to	assess	whether	the	effect	of	probe	likelihood	holds	up	when	other	

theorized	effects	on	memory	performance	are	taken	into	account,	—	as	well	as	to	

directly	compare	how	well	different	models	perform	when	conditions	are	described	

by	probe	likelihood	rather	than	by	mnemonic	load	—		we	next	evaluated	how	well	

four	leading	models	of	working	memory	performance	fit	our	data.	Specifically,	we	

examined	two	fixed-capacity	models	already	discussed,	the	slots+averaging	and	

slots+resoures	models	(Zhang	&	Luck,	2008),	as	well	as	two	capacity-free,	

continuous-resource	models:	an	equal-precision	model,	in	which	each	item	in	the	

array	is	assumed	to	have	equal	precision	(Bays	&	Husain,	2008),	and	a	variable-

precision	model,	in	which	precision	varies	across	items	and	trials	(van	den	Berg	et	

al.,	2012;	see	also,	Fougnie	et	al.,	2012).	Importantly,	both	the	equal-	and	variable-

precision	models	assume	that	precision	varies	according	to	a	power	law	

relationship	to	set	size.	The	parameters	of	the	four	models	were	fit	directly	to	the	

raw	data	using	the	procedure	described	by	van	den	Berg	et	al.	(2014).		
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	 In	order	to	examine	the	effects	of	the	deliberate	(as	opposed	to	the	random)	

allocation	of	attention	across	each	of	these	models,	we	analyzed	the	data	both	by	

memory	load	and	by	probe	likelihood.	That	is,	for	each	model	and	condition,	we	

performed	two	analyses:	one	in	which	the	model	parameter	N	was	defined	as	the	

total	number	of	to-be-remembered	items,	which	has	previously	been	the	standard;	

in	the	second	analysis	the	model	parameter	N	was	defined	as	1/probe	likelihood	

(rounded	to	the	nearest	item).	That	is,	if	an	item	was	probed	with	33%	probability,	

we	assumed	that	this	is	equivalent	to	a	condition	in	which	three	items	were	probed	

with	equal	probability.	Thus,	independent	of	whether	VWM	is	limited	by	a	fixed-

capacity	or	a	continuous-resource,	we	would	predict	that	if	attentional	allocation	

best	determines	the	precision	of	VWM	representation,	then	the	second	group	of	

models	defined	by	probe	likelihood	should	outperform	those	defined	by	memory	

load	alone.	Moreover,	if	the	relationship	between	attentional	allocation	and	VWM	

performance	is	related	by	a	power	law,	we	would	expect	the	continuous-resource	

models	to	be	a	better	fit	to	the	data	than	the	fixed-capacity	models.		
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Figure	4	-	Change	in	AIC	values	relative	to	the	best	fitting	model	for	Experiments	1a	(left)	and	1b	(right).	
Values	closer	to	zero	indicate	better	model	fits.	Black	bars	represent	the	model	fits	when	data	were	
modeled	as	a	function	of	load	(the	total	number	of	to-be-remembered	items).	Grey	bars	represent	the	
model	fits	when	data	were	modeled	as	a	function	of	probe	likelihood.	Error	bars	represent	1	standard	
error	of	the	mean	across	subjects.			

	 The	change	in	AIC	values	for	each	model	and	each	experiment	(relative	to	the	

best-fitting	model)	are	presented	in	Figure	4.	(The	complete	list	of	model	

parameters	for	each	model,	fit	type,	and	experiment	can	be	found	in	Supplementary	

Tables	3	–	4).		As	can	be	seen	from	the	figure,	across	both	experiments,	the	best	

fitting	model	was	the	variable-precision	model	fit	to	probe	likelihood	(power	

constant	alpha	=	-1.43	and	-1.2	in	Experiments	1a	and	1b,	respectively).	This	was	

true	for	19/20	individual	subjects	in	each	experiment,	with	the	exceptions	being	a	

variable-precision	model	fit	by	load	in	Experiment	1a	and	the	slot-averaging	model	

fit	by	probe	likelihood	in	Experiment	1b.	This	finding	is	consistent	with	previous	

studies	that	have	demonstrated	strong	evidence	in	favor	of	variable	precision	

models	over	other	models	(Fougnie	et	al.,	2012;	van	den	Berg	et	al.,	2012).	However,	

our	findings	suggest	that	a	significant	proportion	of	fluctuations	in	attention	across	

items	can	be	accounted	for	the	probe	likelihood,	as	the	variable-precision	model	fit	



CONTINUOUS	VWM	MEDIATED	BY	ATTENTION	
	

28	

to	probe	likelihood	outperformed	the	same	model	fit	to	memory	load	for	all	but	1	of	

40	subjects	across	two	experiments.	Thus,	although	there	remains	a	significant	

amount	of	variability	in	memory	precision	across	items	and	trials,	the	data	are	

consistent	with	a	model	in	which	precision	scales	according	to	a	power	law	defined	

by	the	proportion	of	resources	allocated	to	each	item.		

Discussion	

	 In	the	current	study,	we	examined	VWM	performance	on	a	continuous	report	

task	by	manipulating	both	the	number	of	items	to	be	remembered	(load)	as	well	as	

the	relative	likelihood	that	a	sample	item	would	be	probed	(cue	validity).	Our	

results	revealed	four	novel	findings:	First,	the	amount	of	error	in	a	VWM	recall	task	

(SDresponse)	is	better	predicted	by	probe	likelihood	than	by	the	overall	memory	load.	

Second,	uncued	items	can	receive	only	a	small	proportion	of	memory	resources	

relative	to	neutral-cued	items,	and	the	proportion	of	resources	received	is	

determined	by	the	probe	validity	of	each	item.	Third,	the	measures	obtained	

through	the	three-component	mixture	model	(Bays	et	al.,	2009)	are	all	strongly	

predicted	by	the	probe	likelihood	of	each	item,	and	this	effect	follows	a	simple	

power	law.	Finally,	raw	error	was	best	fit	by	a	model	in	which	precision	varied	as	a	

function	of	the	proportion	of	resources	allocated	to	each	item	according	to	a	power	

law,	in	addition	to	varying	randomly	across	items	and	trials.	Together,	the	results	

favor	a	model	of	VWM	in	which	performance	is	limited	by	the	allocation	of	a	

continuous	attentional	resource.		
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There	are	a	number	of	implications	that	arise	from	these	findings.	First,	we	

reveal	that	although	load	(i.e.,	the	number	of	items	to	be	remembered)	can	be	a	

strong	predictor	of	VWM	performance,	it	is	often	confounded	with	the	proportion	of	

resources	allocated	to	each	item;	when	considered	at	the	same	time,	resource	

allocation	is	the	more	useful	predictor.	By	using	cue	validity	as	a	proxy	for	

attentional	allocation,	we	observed	that	changes	in	load	have	little	effect	on	VWM	

performance	when	attention	is	held	constant,	whereas	changes	in	attention	have	a	

large	effect	on	performance	when	load	is	held	constant.	This	finding	mirrors	those	

observed	in	visual	search,	which	have	demonstrated	that	the	relevant	set	size,	

rather	than	the	sensory	load	per	se,	is	a	limiting	factor	(Palmer,	1994;	Palmer,	Ames,	

&	Lindsey,	1993).	Although	these	previous	studies	did	not	vary	the	probability	of	

the	attentional	cues	in	visual	search,	they	are	consistent	with	the	finding	that	the	

effect	of	attentional	allocation	during	encoding	is	independent	of	the	actual	stimulus	

load,	and	is	better	predicted	by	the	relative	priority	of	items	in	the	display.	Our	

findings	consequently	have	significant	implications	for	models	of	VWM,	which	are	

largely	focused	on	how	many	items	must	be	maintained,	rather	than	on	how	

resources	are	flexibly	distributed	across	items.	Specifically,	these	results	suggest	

that	future	models	and	empirical	investigations	of	VWM	capacity	would	be	better	

informed	by	assessing	the	effects	of	item	probability	rather	than	memory	load.	

Second,	although	previous	studies	have	shown	that	attentional	priority	can	

affect	overall	precision	(Klyszejko	et	al.,	2014),	we	are	the	first	to	demonstrate	that	

this	effect	is	predicted	by	a	power	law	function.	Moreover,	the	finding	that	a	power	

law	function	could	explain	between	88	–	98%	of	the	variance	regardless	of	whether	
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we	were	describing	overall	response	error,	relative	precision,	or	any	of	the	

measures	from	the	three-component	mixture	model	speaks	to	the	explanatory	

power	of	the	continuous	resource	model	over	the	discrete-capacity	model.	That	is,	

continuous-resource	models	make	few	assumptions	about	how	VWM	performance	

should	change	as	a	function	of	load	(or	the	distribution	of	attention)	beyond	the	fact	

that	it	should	change	proportionally	to	the	amount	of	resources	allocated	to	each	

item	(Ma	et	al.,	2014;	Zokaei	et	al.,	2011).	Here,	we	show	that	this	holds	independent	

of	which	aspect	of	performance	is	measured	(i.e.,	precision,	guessing,	or	swap	

errors).	Thus,	although	we	should	be	cautious	in	interpreting	the	power	law	fits	

from	the	mixture	model	(van	den	Berg	&	Ma,	2014),	the	finding	that	each	measure	

can	be	explained	by	the	same	function	(and	that	this	function	explains	upwards	of	

90%	of	the	variance	across	conditions)	provides	compelling	support	for	the	

continuous-resource	model.	In	other	words,	the	finding	that	power	law	functions	

provide	a	strong	fit	regardless	of	which	measure	is	used	provides	a	parsimonious	

explanation	for	the	relationship	between	memory	load,	attention,	and	behavior.	

Moreover,	the	finding	that	both	non-target	errors	and	guessing	rates	increased	with	

decreasing	probe	likelihood	suggests	that	these	two	types	of	errors	may	both	be	

attributable	to	insufficient	allocation	of	attention	to	individual	items,	thereby	

increasing	the	likelihood	of	memory	decay	(Pertzov,	Bays,	Joseph,	&	Husain,	2013),	

or	replacement	through	competitive	processes	during	encoding	(Emrich	&	Ferber,	

2012),	although	the	exact	effect	attention	has	on	guess	rates	and	non-target	errors	

likely	requires	further	study.		
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	 	Third,	we	demonstrate	that	VWM	precision	(including	when	measured	using	

a	mixture	model)	can	vary	across	items	within	memory,	and	the	proportion	of	

resources	allocated	to	a	given	item	can	be	very	small.	These	results	contrast	those	of	

Zhang	and	Luck	(2008)	who	observed	no	differences	in	the	precision	between	

neutral	cued	items	and	invalidly	cued	items.	The	authors	suggested	this	finding	was	

evidence	for	a	slots+averaging	model,	in	which	resources	are	allocated	via	discrete	

slots,	making	it	impossible	for	items	to	receive	“just	a	few	drops”	of	resources.	There	

are	a	few	possible	reasons	why	our	results	differ	from	those	of	Zhang	and	Luck	

(2008).	First,	we	used	a	three-component	mixture	model	(Bays	et	al.,	2009),	which	

includes	a	parameter	for	non-target	errors,	as	opposed	to	the	two-component	model	

used	by	Zhang	and	Luck	(2008).	These	responses	have	been	shown	to	potentially	

make	up	a	significant	proportion	of	responses	in	a	continuous	recall	task	(van	den	

Berg	at	al.,	2014),	and	can	therefore	affect	the	precision	measure	of	a	mixture	model	

(Bays	et	al.,	2009).	Second,	as	can	be	observed	in	Table	2,	our	results	suggest	that	

the	effect	size	of	the	difference	in	the	circular	SD	of	the	mixture	model	between	

conditions	depends	in	part	on	the	magnitude	of	the	difference	in	resource	allocation.	

Thus,	in	the	study	by	Zhang	and	Luck	(2008),	the	difference	in	resource	allocation	

between	neutral	conditions	(25%	per	item)	and	invalid	conditions	(10%	per	item)	

may	have	been	too	small	to	have	observed	a	significant	difference	with	the	size	of	

their	sample.	Ultimately,	however,	differences	between	the	two	studies	may	simply	

be	due	to	the	unreliability	of	the	mixture	model	measures	at	the	tested	number	of	

trials	(van	den	Berg	&	Ma,	2014).		
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We	also	found	that	variable-precision	models	are	the	best	overall	fit	to	the	

data,	consistent	with	a	number	of	previous	findings	(Fougnie	et	al.,	2012;	van	den	

Berg	et	al.,	2012)	that	demonstrate	that	VWM	performance	can	be	explained	by	

spontaneous	item-to-item	fluctuations	in	memory	fidelity,	in	addition	to	load	

demands.	Whereas	these	models	are	either	equivocal	about	the	source	of	variability	

(attributing	it	to	attention,	arousal,	or	random	noise	(van	den	Berg	et	al.,	2012))	or	

ascribe	it	to	stochastic	degradation	of	representations	over	time	(Fougnie	et	al.,	

2012),	our	results	reveal	a	decidedly	non-stochastic	source	of	variance:	spatial	

attention.	Although	the	variable-precision	model	fit	to	probe	likelihood	was	the	best	

overall	fit	to	the	data,	it	is	important	to	note	that	across	all	four	tested	models,	the	

models	fit	to	probe	likelihood	out-performed	the	same	models	fit	to	overall	load.	

Thus,	even	though	it	is	possible	that	there	exist	other	models	which	may	better	

predict	performance	(van	den	Berg	et	al.,	2014),	our	findings	suggest	that	future	

models	would	benefit	from	modeling	behavior	as	a	function	of	attentional	priority,	

instead	of	or	in	addition	to	modeling	behavior	as	a	function	of	memory	load	alone.		

How	does	attention	regulate	the	variability	of	precision?	While	it	is	possible	

that	attention	offsets	degradation	during	maintenance	(Murray,	Nobre,	Clark,	Cravo,	

&	Stokes,	2013),	the	presence	of	the	predictive	spatial	cues	during	the	sample	is	

consistent	with	a	mechanism	in	which	VWM	performance	is	limited	by	encoding	

processes	(Emrich	&	Ferber,	2012;	Linke,	Vicente-Grabovetsky,	Mitchell,	&	Cusack,	

2011;	Mazyar,	van	den	Berg,	&	Ma,	2012;	van	den	Berg	et	al.,	2012).	Our	results	are	

also	consistent	with	a	population-coding	account	of	the	effect	of	attention	on	errors	

in	VWM	(Bays,	2014).	Namely,	Bays	(2014)	demonstrated	that	an	increase	in	
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response	errors	with	increasing	memory	load	could	be	accounted	for	by	a	decrease	

in	the	signal-to-noise	in	a	population	of	neurons	tuned	to	the	features	of	the	

memory	items.	This	study	also	demonstrated	that	the	effect	of	attention	on	memory	

could	be	modeled	as	a	gain	boost	to	the	neurons	coding	the	features	of	the	attended	

(cued)	item	or	location.	Critically,	the	gain	factor	required	to	optimize	performance	

increased	as	a	function	of	load.	In	other	words,	because	additional	items	were	

occupying	additional	resources	(increasing	the	signal-to-noise	ratio),	a	greater	gain	

signal	was	required	to	prioritize	a	single	cued	(attended)	item	over	the	remaining	

uncued	items.		Importantly,	the	results	also	demonstrated	that	human	observers	

could	perform	at	close	to	optimal	levels	in	order	to	prioritize	the	cued	item	and	

minimize	overall	errors.	Thus,	this	study	provides	a	neural	basis	for	observers	in	the	

current	study	to	have	efficiently	and	optimally	allocated	attentional	resources	

according	to	the	predictive	value	and	number	of	cues.	

One	additional	finding	of	note	is	the	discrepancy	between	our	results	and	those	

of	Zhang	and	Luck	(2011),	who	tested	whether	decreasing	the	required	precision	

for	a	correct	response	in	an	VWM	task	would	lead	participants	to	store	each	item	

with	a	lower	precision,	in	turn	increasing	the	number	of	remembered	items.	

Consistent	with	a	discrete	capacity,	they	observed	no	changes	in	precision,	even	

when	performance	was	rewarded	with	financial	incentives.	There	are	a	number	of	

factors	that	could	account	for	these	differences.	First	and	foremost,	our	findings	are	

the	direct	result	of	manipulations	that	explicitly	encourage	participants	to	flexibly	

allocate	attention	over	varying	numbers	of	stimuli.	If,	as	our	results	suggest,	the	

allocation	of	VWM	resources	hinges	on	the	allocation	of	attention	during	encoding,	
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Zhang	and	Luck’s	manipulation	of	response	criterion	may	have	had	no	effect	on	the	

proportion	of	VWM	resources	allocated	to	each	item,	resulting	in	null	effects.	

Second,	it	is	possible	that	while	participants	in	the	Zhang	and	Luck	(2011)	study	

were	trading	off	capacity	and	precision	on	individual	items,	the	analysis	method	

used	could	not	detect	any	such	trade	off;	that	is,	by	treating	all	items	equally,	it	is	

possible	that	the	study	of	Zhang	and	Luck	(2011)	failed	to	capture	the	variance	

between	individual	items,	as	is	reported	here.	Third,	previous	studies	have	

demonstrated	that	larger	and	more	varying	incentives	can	lead	subjects	to	increase	

precision	for	individual	items	(Klyszejko	et	al.,	2014).	Importantly,	this	effect	was	

found	when	manipulations	emphasized	prioritizing	individual	items,	rather	than	

manipulations	that	prioritized	high	vs.	low	precision.	Thus,	it	appears	possible	to	

flexibly	allocate	resources	according	to	task	demands,	at	least	when	performance	

for	individual	items	is	accounted	for.		

Ultimately,	our	results	provide	further	support	for	the	proposal	that	attention	

and	VWM	are	inextricably	linked	(Awh	&	Jonides,	2001;	Gazzaley	&	Nobre,	2012;	

Postle,	2006;	Souza,	Rerko,	Lin,	&	Oberauer,	2014),	although	other	factors	likely	also	

contribute	to	the	capacity	limits	of	VWM	(Brady	&	Alvarez,	2015).	A	recent	

controversy	in	the	field	relates	to	whether	information	in	VWM	is	stored	in	areas	of	

frontal	and	parietal	cortices	or	in	sensory	visual	cortex	(Christophel,	Cichy,	Hebart,	

&	Haynes,	2015;	Emrich,	Riggall,	Larocque,	&	Postle,	2013;	Ester,	Sprague,	&	

Serences,	2015;	Riggall	&	Postle,	2012;	Roggeman,	Klingberg,	Feenstra,	Compte,	&	

Almeida,	2014).	Given	that	the	results	here	speak	to	the	importance	of	top-down	

attentional	control,	one	interesting	proposal	is	that	although	storage	itself	may	
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occur	in	sensory	cortex,	the	performance-limiting	attentional	allocation	occurs	via	

signals	from	fronto-parietal	networks.	Regardless,	the	results	speak	to	the	

importance	of	further	elucidating	the	nature	of	the	relationship	between	neural	

mechanisms	of	attentional	selection	and	VWM	storage	(Awh	&	Jonides,	2001;	Postle,	

2006).		
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Tables	

Table	1.	Stimulus	parameters	for	conditions	in	Experiments	1a	and	1b	

	 Condition	 Number	
of	Items	

Number	
of	Cues	

Memory	
Load	

Cue	
Validity	
(%)	

Probability	
of	Cued	
Item	
Probed	
(%)	

Probability	
of	Uncued	
Item	Probed	

(%)	
	

Experiment	
1a	 	 	 	 	 	 	 	

	 1	cue	–	
100%	 6	 1	 1	 100	 100	 0	

	 2	cues	–	
100%	 6	 2	 2	 100	 50	 0	

	 3	cues	–	
100%	 6	 3	 3	 100	 33	 0	

	 1	cue	–	
50%	 6	 1	 6	 50	 50	 10	

	 2	cues	–	
66%	 6	 2	 6	 66	 33	 8.25	

	 1	cue	–	
33%	 6	 1	 6	 33	 33	 13	

	 6	cues	–	
100%	 6	 6	 6	 100	 100	 N/A	

Experiment	
1b	 	 	 	 	 	 	 	

	 1	cue	–	
100%	 4	 1	 1	 100	 100	 0	

	 2	cues	–	
100%	 4	 2	 2	 100	 50	 0	

	 3	cues	–	
100%	 4	 3	 3	 100	 33	 0	

	 4	cues	–	
100%	 4	 4	 4	 100	 25	 0	

	 2	cues	–	
66%	 4	 2	 4	 66	 33	 16.5	

	 1	cue	–	
33%	 4	 1	 4	 33	 33	 22	

	 3	cues	–	
66%	 4	 3	 4	 66	 22	 33	

	
Load	1,	1	
cue		-	
100%	

1	 1	 1	 100	 16	 N/A	
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Table	2.	t-test	statistics	comparing	SDMM	for	neutral	(3	cues	–	100%)	trials	to	uncued	

trials	(uncorrected,	one-tailed)	

Experiment	 Set	Size	 Condition	

Probe	Likelihood	

(uncued	items)	

(%)	

t		

(df	=	19)	
p	 Cohen’s	d	

1a	 	 	 	 	 	 	

	 6	 1	cue	–	50%	 10	 -1.730	 .05	 -.537	

	 6	 2	cues	–	66%	 8.25	 -3.448	 .001	 -1.141	

	 6	 1	cue	–	33%	 13	 -1.835	 .041	 -0.557	

1b	 	 	 	 	 	 	

	 4	 2	cues	–	66%	 16.5	 -1.715	 .051	 -0.579	

	 4	 3	cues	–	66%	 33	 -0.558	 .292	 -1.175	

	 4	 1	cue	–	33%	 22	 -1.558	 .068	 -0.449	
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Supplementary	Tables	

Supplementary	Table	1.	Fits	for	validation	data	(uncued	trials)	for	the	power	law	
model	described	in	Figures	2	and	3.	

Measure	 Fit	 RMSE	
SDresponse	 Power	(by	load)	 10.58	

Power	(by	Probe	
Likilihood)	

15.78	

Relative	
Precision	

Power	(by	load)	 0.048	

	 Power	(by	Probe	
Likelihood)	

0.09	

SDMM	 Power	 11.08	
GP	 Power	 0.35	
NTP	 Power	 0.21	
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Supplementary	Table	2.	Means	(and	SDs)	for	response	error	(SDresponse)	and	mixture	
model	measures	(SDMM,	Gp,	NTp),	by	condition.		

	 	 Condition	 SDresponse	 SDMM	 Gp	 NTp	
Experiment	

1a	 	 	 	 	 	 	

	 Cued	
Trials	 	 	 	 	 	

	 	 1	cue	–	100%	 16.2	
(8.7)	

15.9	
(3.5)	

0.04	
(0.1)	

0.01	
(0.01)	

	 	 2	cues	–	100%	 27.4	
(10.4)	

20.6	
(4.2)	

0.08	
(0.1)	

0.04	
(0.06)	

	 	 3	cues	–	100%	 40.0	
(13.1)	

21.5	
(4.4)	

0.19	
(0.2)	

0.1	
(0.2)	

	 	 1	cue	–	50%	 30.8	
(10.2)	

20.1	
(4.7)	

0.1	
(0.1)	

0.04	
(0.06)	

	 	 2	cues	–	66%	 37.5	
(11.2)	

20.8	
(4.1)	

0.17	
(0.2)	

0.1	
(0.1)	

	 	 1	cue	–	33%	 35.2	
(12.4)	

21.4	
(6.7)	

0.15	
(0.1)	

0.06	
(0.1)	

	 	 6	cues	–	100%	 51.1	
(6.3)	

28.2	
(18.8)	

0.3	
(0.3)	

0.3	
(03.)	

	 Uncued	
Trials	 	 	 	 	 	

	 	 1	cue	–	50%	 52.9	
(2.0)	

31.4	
(25.7)	

0.31	
(0.3)	

0.39	
(0.3)	

	 	 2	cues	–	66%	 53.6	
(3.4)	

47.8	
(32.3)	

0.37	
(0.3)	

0.43	
(0.4)	

	 	 1	cue	–	33%	 52.6	
(3.6)	

28.3	
(14.5)	

0.36	
(0.2)	

0.35	
(0.2)	

Experiment	
1b	 	 	 	 	 	 	

	 Cued	
Trials	 	 	 	 	 	

	 	 1	cue	–	100%	 15.2	
(7.3)	

15.9	
(2.7)	

0.02	
(0.03)	

0.01	
(0.01)	

	 	 2	cues	–	100%	 28.8	
(13.7)	

18.1	
(4.0)	

0.10	
(0.2)	

0.06	
(0.1)	

	 	 3	cues	–	100%	 41.4	
(10.8)	

22.2	
(5.3)	

0.17	
(0.1)	

0.15	
(0.2)	

	 	 4	cues	–	100%	 45.2	
(9.5)	

21.4	
(5.2)	

0.28	
(0.2)	

0.16	
(0.2)	

	 	 2	cues	–	66%	 39.9	
(10.8)	

22.0	
(4.2)	

0.17	
(0.3)	

0.12	
(0.1)	

	 	 1	cue	–	33%	 35.2	
(8.1)	

21.0	
(3.6)	

0.15	
(0.1)	

0.05	
(0.04)	

	 	 3	cues	–	66%	 43.1	
(9.6)	

22.1	
(4.1)	

0.24	
(0.3)	

0.15	
(0.1)	

	 	 Load	1,	1	cue		-	
100%	

15.1	
(6.6)	

22.0	
(4.1)	

0.03	
(0.03)	 N/A	

	 Uncued	
Trials	 	 	 	 	 	

	 	 2	cues	–	66%	 49.6	
(5.8)	

31.5	
(22.2)	

0.29	
(0.3)	

0.26	
(0.3)	

	 	 1	cue	–	33%	 47.7	
(6.4)	

23.0	
(3.9)	

0.27	
(0.1)	

0.23	
(0.2)	

	 	 3	cues	–	66%	 45.9	
(5.7)	

25.6	
(9.5)	

0.31	
(0.2)	

0.17	
(0.22)	
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Supplementary	Table	3.	Maximum	Likelihood	Estimates	for	Each	Model	and	Fit	Type	
Experiment	1a	

Model	 Fit	Type	 Parameter	 M	±	SEM	 Mdn	
Slots+Averaging	 Load	 log	J1	 8.25	±		7.46	 1.99	
	 	 log	κ1	 10.25	±	9.21	 9.47	
	 	 Kmean	 2.15	±	0.13	 2	
	 Probability	 log	J1	 1.77	±	0.33	 1.67	
	 	 Log	κ1	 11.37	±	10.2	 10.8	
	 	 Kmean	 1.75	±	0.1	 2	
Slots+Resources	 Load	 log	J1	 9.33	±	8.9	 2.5	
	 	 α	 -0.86	±	0.23	 -0.67	
	 	 log	κ1	 9.41	±	8.1	 9.0	
	 	 Kmean	 2.1	±	0.12	 2	
	 Probability	 log	J1	 7.6	±	7.05	 2.51	
	 	 α	 -1.25	±	0.17	 -1.8	
	 	 log	κ1	 9.67	±	8.39	 9.34		
	 	 Kmean	 1.75	±	0.1	 2	
Equal	Precision	 Load	 log	J1	 2.12	±	0.1	 2.10		
	 	 α	 -1.61	±	0.06	 -1.58	
	 	 log	κ1	 10.77	±	9.0	 10.62	
	 Probability	 log	J1	 10.76	±	10.62	 2.44	
	 	 α	 -3.25	±	0.70	 -2.16	
	 	 log	κ1	 10.70	±	9.15	 10.24	
Variable	Precision		 Load	 log	𝐽1	 5.6	±	3.85	 5.43	
	 	 α	 -0.89	±	0.043	 -0.89	
	 	 log	τ	 6.40	±	4.72	 6.09	
	 	 log	κ1	 3.03	±	0.53	 2.99	
	 Probability	 log	𝐽1	 6.23	±	5.17	 5.55	
	 	 α	 -1.43	±	0.07	 -1.43	
	 	 log	τ	 6.63	±	5.87	 6.06	
	 	 log	κ1	 2.96	±	0.45	 2.96	
	

	

	

	

	

	

	

	



CONTINUOUS	VWM	MEDIATED	BY	ATTENTION	
	

48	

	

Supplementary	Table	4.	Maximum	Likelihood	Estimates	for	Each	Model	and	Fit	Type	
Experiment	1b	

Model	 Fit	Type	 Parameter	 M	±	SEM	 Mdn	
Slots+Averaging	 Load	 log	J1	 8.2	±	7.8	 1.11	
	 	 log	κ1	 10.41	±	8.01	 10.09	
	 	 Kmean	 2.55	±	0.47	 2	
	 Probability	 log	J1	 7.74	±	6.93	 2.23	
	 	 log	κ1	 11.53	±	11.14	 9.14	
	 	 Kmean	 1.85	±	0.08	 2	
Slots+Resources	 Load	 log	J1	 7.19	±	6.89	 0.96	
	 	 α	 -1.08	±	0.35	 -0.58	
	 	 log	κ1	 10.9	±	9.83	 9.95	
	 	 Kmean	 3.6	±	0.89	 2	
	 Probability	 log	J1	 7.39	±	7.38	 2.33	
	 	 α	 -1.01±	0.38	 -0.79	
	 	 log	κ1	 10.0	±	8.77	 8.99	
	 	 Kmean	 1.85	±	0.08	 2	
Equal	Precision	 Load	 log	J1	 9.35	±	9.13	 0.92	
	 	 α	 -1.47	±	0.43	 -0.9	
	 	 log	κ1	 11.43	±	10.48	 10.65	
	 Probability	 log	J1	 2.29	±	-.03	 2.31	
	 	 α	 -1.86	±	0.17	 -1.69	
	 	 log	κ1	 10.75	±	9.014	 10.58	
Variable	Precision		 Load	 log	𝐽1	 6.07	±	5.23	 4.88	
	 	 α	 -0.71	±	0.10	 -0.61	
	 	 log	τ	 8.08	±	7.49	 5.84	
	 	 log	κ1	 3.11	±	0.9	 2.97	
	 Probability	 log	𝐽1	 6.18	±	5.51	 4.95	
	 	 α	 -1.2	±	0.1	 -1.04	
	 	 log	τ	 6.84	±	6.43	 4.98	
	 	 log	κ1	 3.2	±	0.99	 3.05	
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Figure	Captions.		

Figure	1.	A	schematic	of	experimental	trials	from	Experiment	1a.	Participants	were	

instructed	to	report	the	color	of	the	probed	item	(as	indicated	by	the	bold	outline).	

The	number	of	items	to	be	remember	was	determined	by	the	validity	of	the	cues,	

which	was	indicated	to	participants	prior	to	each	block.	Experiment	1b	used	total	

set	sizes	of	4	or	1,	otherwise	the	procedures	were	identical.		

Figure	2.	Overall	response	error	(SDresponse)	and	relative	precision,	plotted	by	total	

number	of	to-be-remembered	items	(A,C)	or	the	likelihood	of	an	item	being	probed	

(B,D).	Data	are	fit	to	a	power	law	function	as	in	Bays	&	Husain	(2008).	Green	and	red	

items	represent	data	from	Experiments	1a	and	1b,	respectively.	Closed	circles	

represent	cued	items,	open	diamonds	represent	uncued	items	(validation	data).	

Dashed	lines	indicated	95%	confidence	intervals	of	the	fitted	models.	Full	means	

and	SDs	are	available	in	Supplementary	Table	2.	

Figure	3.	Error	(SDMM),	guess	rate	(Gp)	and	non-target	errors	(NTp)	obtained	from	

the	three-component	mixture	model	(Bays	et	al.,	2009).	(Left)	Data	are	plotted	by	

total	number	of	items	to-be-remembered.	(Right)	Plotting	the	data	by	the	likelihood	

of	an	item	being	probed	and	fitting	it	to	a	power	law	function	is	a	strong	predictor	

across	all	three	measures.	Green	and	red	items	represent	data	from	Experiments	1a	

and	1b,	respectively.	Closed	circles	represent	cued	items,	open	diamonds	represent	

uncued	items	(validation	data).	Dashed	lines	indicated	95%	confidence	intervals	of	

the	fitted	models.	Full	means	and	SDs	are	available	in	Supplementary	Table	2.	
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Figure	4.	Change	in	AIC	values	relative	to	the	best	fitting	model	for	Experiments	1a	

(left)	and	1b	(right).	Black	bars	represent	the	model	fits	when	data	were	modeled	as	

a	function	of	load	(the	total	number	of	to-be-remembered	items).	Grey	bars	

represent	the	model	fits	when	data	were	modeled	as	a	function	of	probe	likelihood.	

Error	bars	represent	1	standard	error	of	the	mean	across	subjects.			


