Lab Meetings

Below is a list of all the papers or topics we discuss during our lab meetings.

Fall 2022

November 22, 2022: Kramer, M. A., Hebart, M. N., Baker, C. I., & Bainbridge, W. A. (2022). The features underlying the memorability of objects. bioRxiv. [Link]

November 3, 2022: Bruning, A.L., & Lewis-Peacock, J.A. (2020). Long-term memory guides resource allocation in working memory. Sci Rep 10, 22161 (2020). [Link]

October 27, 2022: Linde-Domingo, J., Treder, M. S., Kerrén, C., & Wimber, M. (2019). Evidence that neural information flow is reversed between object perception and object reconstruction from memory. Nature communications10(1), 179. [Link]

October 6, 2022: Strand, J. (2022). Error tight: Exercises for lab groups to prevent research mistakes. American Psychological Association. [Link]

September 29, 2022: Günseli, E., Foster, J. J., Sutterer, D. W., Todorova, L., Vogel, E. K., Awh, E. (2022). Overlapping Neural Representations for Dynamic Visual Imagery and Stationary Storage in Spatial Working Memory. bioRxiv. [Link]

September 22, 2022: Greičiūtė, M. (2022). Cognitive and neural mechanisms of resource allocation in visual working memory using real-world objects [Unpublished master’s thesis]. Stockholm University. [Link]

September 15, 2022: Thyer, W., Adam, K. C. S., Diaz, G. K., Velázquez Sánchez, I. N., Vogel, E. K., & Awh, E. (2022). Storage in Visual Working Memory Recruits a Content-Independent Pointer System. Psychological science33(10), 1680–1694. [Link]

Winter 2022

February 14, 2022: Downing, P. E. (2000). Interactions Between Visual Working Memory and Selective Attention. Psychological Science, 11(6), 467–473. [Link]

February 7, 2022: Keogh, R., & Pearson, J. (2014). The sensory strength of voluntary visual imagery predicts visual working memory capacity. Journal of Vision, 14(12), 7–7. [Link]

January 31, 2022: Hustá, C., Belopolsky, A., Dalmaijer, E., & Mathôt, S. (2019). The Pupillary Light Response Reflects Visual Working Memory Content. Journal of Experimental Psychology: Human Perception and Performance, 45(11), 1522–1528. [Link]

January 24, 2022: Hajonides, J. E., van Ede, F., Stokes, M. G., & Nobre, A. C. (2020). Comparing the prioritization of items and feature-dimensions in visual working memory. Journal of Vision, 20(8), 25. [Link]

Fall 2021

November 29, 2021: Deng, X., Wang, J., Zang, Y., Li, Y., Fu, W., Su, Y., Chen, X., Du, B., Dong, Q., Chen, C., & Li, J. (2021). Intermittent theta burst stimulation over the parietal cortex has a significant neural effect on working memory. Human Brain Mapping, hbm.25708. [Link]

November 15, 2021: Uncertainty ratings can improve the estimation of memory precision by several orders of magnitude video discussion [Link]

November 8, 2021: Zhang, J., Ye, C., Sun, H.-J., Zhou, J., Liang ,T., Li, Y., &Liu, Q. (2021). The Passive State: A Protective Mechanism for Information in Working Memory Tasks Journal of Experimental Psychology: Learning, Memory, and Cognition. Advance online publication.

November 1, 2021: Asp, I. E., Störmer, V. S., & Brady, T. F. (2021). Greater Visual Working Memory Capacity for Visually Matched Stimuli When They Are Perceived as Meaningful. Journal of Cognitive Neuroscience, 33(5), 902–918. [Link]

October 4, 2021: Contralateral delay activity (CDA) review draft

September 27, 2021: Keogh, R., Wicken, M., & Pearson, J. (2021). Visual working memory in aphantasia: Retained accuracy and capacity with a different strategy. Cortex, 143, 237–253. [Link]

September 20, 2021: Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity: From psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences17(8), 391–400. [Link]

September 20, 2021: Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing concepts of working memory. Nature Neuroscience17(3), 10. [Link]

Winter 2021

January 22, 2021: Sone, H., Kang, M.-S., Li, A. Y., Tsubomi, H., & Fukuda, K. (2021). Simultaneous estimation procedure reveals the object-based, but not space-based, dependence of visual working memory representations. Cognition, 209, 104579. [Link]

January 15, 2021: Lorenc, E. S., Mallett, R., & Lewis-Peacock, J. A. (2021). Distraction in visual working memory: Resistance is not futile. Trends in Cognitive Sciences. [Link]

Fall 2020

November 24, 2020: Christine’s practice defense presentation

November 10, 2020: Konstantinou, N., & Lavie, N. (2020). Effects of visual short-term memory load and attentional demand on the contrast response function. Journal of Vision, 20(10), 6–6. [Link]

November 3, 2020: Yu, Q., Teng, C., & Postle, B. R. (2020). Different states of priority recruit different neural representations in visual working memory. PLOS Biology, 18(6), e3000769. [Link]

October 27, 2020: Hakim, N., Feldmann-Wüstefeld, T., Awh, E., & Vogel, E.K. (2020). Controlling the flow of interruption in working memory. BiorXiv.[Link]

October 6, 2020: Constant, M., & Liesefeld, H. R. (2019). Massive effects of saliency on information processing in visual working memory. PsyArXiv.

September 29, 2020: Williams, R. S., Pratt, J., & Ferber, S. (2020). Directed avoidance and its effect on visual working memory. Cognition, 201, 104277. [Link]

September 22, 2020: Zhang, Z., Gaspelin, N., & Carlisle, N. B. (2020). Probing early attention following negative and positive templates. Attention, Perception, & Psychophysics, 82, 1166–1175. [Link]

September 15, 2020: Vellage, A.-K., Müller, P., Schmicker, M., Hopf, J.-M., & Müller, N. G. (2019). High working memory capacity at the cost of precision? Brain Sciences, 9(9), 210. [Link]

Winter 2020

March 3, 2020: van Moorselaar, D., & Slagter, H. A. (2019). Learning what is irrelevant or relevant: Expectations facilitate distractor inhibition and target facilitation through distinct neural mechanisms. Journal of Neuroscience39(35), 6953-6967. [Link]

February 24, 2020: Howlett, J. R., & Paulus, M. P. (2020). Where perception meets belief updating: Computational evidence for slower updating of visual expectations in anxious individuals. Journal of Affective Disorders, 266, 633-638. [Link]

February 3, 2020: Data meeting – Christine. Read: Carlisle, N. B., & Nitka, A. W. (2019). Location-based explanations do not account for active attentional suppression. Visual Cognition27(3-4), 305-316. [Link]

January 27, 2020: Machizawa, M. G., & Driver, J. (2011). Principal component analysis of behavioural individual differences suggests that particular aspects of visual working memory may relate to specific aspects of attention. Neuropsychologia, 49(6), 1518-1526. [Link]

January 20, 2020: Hakim, N., deBettencourt, M., Awh, E., & Vogel, E. K. (2019). Attention fluctuations impact ongoing maintenance of information in working memory. [Link to pre-print]

January 13, 2020: Feldmann-Wüstefeld, T., Busch, N. A., & Schubö, A. (2020). Failed suppression of salient stimuli precedes behavioral errors. Journal of Cognitive Neuroscience32(2), 367-377. [Link]

Fall 2019

November 25, 2019: Williams, J., Brady, T., & Störmer, V. S. (2019). Natural variation in the fidelity of working memory representations cause only one item to guide attention. [Link to pre-print]

November 18, 2019: Feldmann-Wüstefeld, T., & Awh, E. (2020). Alpha-band activity tracks the zoom lens of attention. Journal of Cognitive Neuroscience32(2), 272-282. [Link]

November 11, 2019: Data meeting – Holly, Christine, and Joel

October 2019: No lab meetings, Dr. Emrich away on sabbatical

September 16, 2019: Vellage, A. K., Müller, P., Schmicker, M., Hopf, J. M., & Müller, N. G. (2019). High working memory capacity at the cost of precision?. Brain sciences9(9), 210. [Link]